zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Non-existence results for semilinear cooperative elliptic systems via moving spheres. (English) Zbl 0962.35054

Nonexistence results for positive (nonnegative) solutions for cooperative elliptic systems of the (vector) form -Δu=f(u) in D, u=0 on D are proved via the method of moving spheres. This constitutes a variant of the celebrated moving plane method due to Alexandrov and applied by Serrin, Gidas-Nirenberg and many others to get symmetry results for positive solutions. This approach of moving spheres was used by McCuan and Padilla for obtaining symmetry results, too. The moving sphere method, in the authors’ claim, unifies and simplifies previous work, even for systems. The method of moving planes raises compactness problems when dealing with unbounded domains, a difficulty which can be overcome in this way.

Theorem 1 states that if D n (n3) is a bounded starshaped domain and f is locally Lipschitz and supercritical, there is no positive solution. Some singularities in the x variable can be allowed. A similar result (Theorem 2) is proved if D is starshaped with respect to infinity and f is subcritical (again in a suitable sense). This gives as corollaries nonexistence results by Gidas and Spruck on n and the half-space, and also for “curved” half-spaces. An interesting monotonicity result (Theorem 3) is very instrumental here. Theorem 4 is an interesting corollary for power nonlinearities and Theorem 5 says that nonnegative solutions to -Δu=f(u) on + n with u=0 on + n for some subcritical f’s depend only on x 1 and are increasing. Some applications to singular problems are also included. In particular, proofs use many subtle comparison arguments and variants of maximum principles.


MSC:
35J55Systems of elliptic equations, boundary value problems (MSC2000)
35B50Maximum principles (PDE)
35B05Oscillation, zeros of solutions, mean value theorems, etc. (PDE)
35J65Nonlinear boundary value problems for linear elliptic equations