zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Lattice electromagnetic theory from a topological viewpoint. (English) Zbl 0968.78005

From the introduction: The main objective of this paper is to tackle the general problem of the consistency of lattice electromagnetic theory within the framework of algebraic topology. By general, we mean lattices with arbitrary metric and topological structures. We distinguish three basic classes of consistency requirements. The first class (based on topological considerations only) is common to all field theories cast on a discrete form, and it is associated with the correct implementation of the boundary operator on the lattice. Discrete schemes that satisfy this first class can be classified as divergence-preserving schemes. The second class (also based on topological considerations only) is related to the topological structure of EM theory and the dual nature of ordinary and twisted cell complexes. The third class is the metric-dependent one, associated with the Hodge operators. We point out that each requirement is a separate, necessary condition for an overall consistent lattice EM theory. In more detail, in Sec. II, the authors write Maxwell’s equations using the language of differential forms and discuss their factorization into topological and metric equations. In Sec. III, they review the discretization of differential forms on a lattice using algebraic topological tools. In Sec. IV, they put Maxwell’s equations on the lattice using the concepts of the previous sections, stressing that it provides an exact counterpart to the continuum theory that is invariant under homeomorphisms. They also discuss the topological consistency requirements associated with the correct implementation of the boundary operator, and their connection with the usual theorems of vector calculus.

In Sec. V, they discuss the concept of dual lattices and how it arises from the necessity of a proper discretization of the different geometrical objects representing the EM fields. In Sec. VI, they treat some additional algebraic properties of the resulting discrete Maxwell’s equations by discussing additional topological consistency requirements associated with the dual structure of the ordinary and twisted cell complexes (important to guarantee reciprocity of the discrete Maxwell’s equations). In Sec. VII, they discuss the problem of the discretization of the constitutive relations, where metric concepts are present and approximations are involved through the discretization of the Hodge operators. They do not present explicit constructions for the Hodge operators (these are highly problem specific); instead, they discuss general rationales for this, and describe basic requirements that any consistent version of the discrete Hodge should satisfy.

Finally, in Sec. VIII, they summarize the conclusions. They use a (3+1) representation with the e -iωt time convention assumed.

MSC:
78A25General electromagnetic theory
58A10Differential forms (global analysis)