zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Forcing strong convergence of proximal point iterations in a Hilbert space. (English) Zbl 0971.90062
Summary: This paper is concerned with convergence properties of the classical proximal point algorithm for finding zeroes of maximal monotone operators in an infinite-dimensional Hilbert space. It is well known that the proximal point algorithm converges weakly to a solution under very mild assumptions. However, it was shown by O. Güler [SIAM J. Control Optim. 29, 403–419 (1991; Zbl 0737.90047)] that the iterates may fail to converge strongly in the infinite-dimensional case. We propose a new proximal-type algorithm which does converge strongly, provided the problem has a solution. Moreover, our algorithm solves proximal point subproblems inexactly, with a constructive stopping criterion introduced in the authors paper [J. Convex Anal. 6, 59–70 (1999; Zbl 0961.90128)]. Strong convergence is foreed by combining proximal point iterations with simple projection steps onto intersection of two halfspaces containing the solution set. Additional cost of this extra projection step is essentially negligible since it amounts, at most, to solving a linear system of two equations in two uniknowns.

MSC:
90C25Convex programming
46N10Applications of functional analysis in optimization and programming
65K05Mathematical programming (numerical methods)