zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The elements of statistical learning. Data mining, inference, and prediction. (English) Zbl 0973.62007
Springer Series in Statistics. New York, NY: Springer. xvi, 533 p. DM 171.09; sFr 147.66; £59.00; $ 74.95 (2001).

This book is designed for researchers and students in the fields of statistics, artificial intelligence, engineering, finance and others. Some of the most important learning methods with the underlying concepts are described. The approach is statistical, though written in a more intuitive fashion emphasizing concepts rather than mathematical details. The authors use the more modern language of machine learning. The dependent and independent variables in statistical literature are interchangeably called responses and inputs, respectively.

The book starts with an overview of the supervisory learning problem, and discusses linear regressions and classifications. For a single predictor, splines, wavelets, penalization and kernel methods are used. Model assessment and selection are covered by concepts of bias, variance, overfitting and cross validation. Other topics include neural networks and show the working principle of vector mnachines. Model inference and averaging is based on maximum likelihood and Bayesian inference. The popular EM algorithm for simplifying difficult maximum likelihood problems is described in the context of a two-component mixture model. Specific methods for supervised learning assume a different structural form for the unknown regression function. Another focus is on boosting methods as those of the most powerful learning principles.

Bibliographic notes giving background references for the material, as well as computational considerations and exercises are provided at the end of each chapter. The S-PLUS programming language is used. The website for this book is located at http://www-stat.stanford.edu/ElemStatLearn, which includes many of the datasets used.

Contents: 1. Introduction; 2. Overview of supervised learning; 3. Linear methods for regression; 4. Linear methods for classification; 5. Basic expansions and regularization; 6. Kernel methods; 7. Model assessment and selection; 8. Model inference and averaging; 9. Additive models, trees, and related methods; 10. Boosting and additive trees; 11. Neural networks; 12. Support vector machines and flexible discriminants; 13. Prototype methods and nearest neighbors; 14. Unsupervised learning.

62C99Statistical decision theory
62-01Textbooks (statistics)
68T05Learning and adaptive systems
68T99Artificial intelligence