zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A variant of Newton’s method with accelerated third-order convergence. (English) Zbl 0973.65037
Authors’ summary: In the given method, we suggest an improvement to the iteration of Newton’s method. Derivation of Newton’s method involves an indefinite integral of the derivative of the function, and the relevant area is approximated by a rectangle. In the proposed scheme, we approximate this indefinite integral by a trapezoid instead of a rectangle, thereby reducing the error in the approximation. It is shown that the order of convergence of the new method is three, and computed results support this theory. Even though we have shown that the order of convergence is three, in several cases, computational order of convergence is even higher. For most of the functions we tested, of convergence in Newton’s method was less than two and for our method, it was always close to three.

65H05Single nonlinear equations (numerical methods)