zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
CSDP, a C library for semidefinite programming. (English) Zbl 0973.90524
Summary: This paper describes CSDP, a library of routines that implements a predictor corrector variant of the semidefinite programming algorithm of Helmberg, Rendl, Vanderbei, and Wolkowicz. The main advantages of this code are that it can be used as a stand alone solver or as a callable subroutine, that it is written in C for efficiency, that it makes effective use of sparsity in the constraint matrices, and that it includes support for linear inequality constraints in addition to linear equality constraints. We discuss the algorithm used, its computational complexity, and storage requirements. Finally, we present benchmark results for a collection of test problems.
MSC:
90C22Semidefinite programming
65Y15Packaged methods in numerical analysis
90C51Interior-point methods
Software:
CSDP