zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of the hydrostatic approximation in oceanography with compression term. (English) Zbl 0978.76101
Summary: The hydrostatic approximation of the incompressible three-dimensional stationary Navier-Stokes equations is widely used in oceanography and other applied sciences. It appears through a limit process due to the anisotropy of the domain in use (an ocean), and it is usually studied as such. We consider in this paper an equivalent formulation to this hydrostatic approximation that includes Coriolis force and an additional pressure term that comes from taking into account the pressure in the equation of state for the density. It therefore models a slight dependence of the density upon compression terms. We study this model as an independent mathematical object, and prove an existence theorem by means of a mixed variational formulation. The proof uses a family of finite element spaces to discretize the problem coupled with a limit process that yields the solution. We finish this paper with an existence and uniqueness result for the evolutionary linear problem associated to this model. This problem includes the same additional pressure term and Coriolis force.
76U05Rotating fluids
76M10Finite element methods (fluid mechanics)
86A05Hydrology, hydrography, oceanography
35Q35PDEs in connection with fluid mechanics