zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Inexact implicit methods for monotone general variational inequalities. (English) Zbl 0979.49006

Summary: Solving a variational inequality problem is equivalent to finding a solution of a system of non-smooth equations. Recently, we proposed an implicit method, which solves monotone variational inequality problems via solving a series of systems of nonlinear smooth (whenever the operator is smooth) equations. It can exploit the facilities of the classical Newton-like methods for smooth equations. In this paper, we extend the method to solve a class of general variational inequality problems

Q(u * )Ω,(v-Q(u * )) T F(u * )0,vΩ·

Moreover, we improve the implicit method to allow inexact solutions of the systems of nonlinear equations at each iteration. The method is shown to preserve the same convergence properties as the original implicit method.

MSC:
49J40Variational methods including variational inequalities
90C30Nonlinear programming
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
47J20Inequalities involving nonlinear operators