zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Single-period multiproduct inventory models with substitution. (English) Zbl 0979.90005
Summary: We study a single-period multiproduct inventory problem with substitution and proportional costs and revenues. We consider N products and N demand classes with full downward substitution, i.e., excess demand for class i can be satisfied using product j for ij. We first discuss a two-stage profit maximization formulation for the multiproduct substitution problem. We show that a greedy allocation policy is optimal. We use this to write the expected profits and its first partials explicitly. This in turn enables us to prove additional properties of the profit function and several interesting properties of the optimal solution. In a limited computational study using two products, we illustrate the benefits of solving for the optimal quantities when substitution is considered at the ordering stage over similar computations without considering substitution while ordering. Specifically, we show that the benefits are higher with high demand variability, low substitution cost, low profit margins (or low price to cost ratio), high salvage values, and similarity of products in terms of prices and costs.
MSC:
90B05Inventory, storage, reservoirs