zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Weakly nonlinear wavepackets in the Korteweg-de Vries equation: The KdV/NLS connection. (English) Zbl 0980.35146

Summary: If the initial condition for the Korteweg-de Vries (KdV) equation is a weakly nonlinear wavepacket, then its evolution is described by the nonlinear Schrödinger (NLS) equation. This KdV/NLS connection has been known for many years, but its various aspects and implications have been discussed only in asides.

In this note, we attempt a more focused and comprehensive discussion including such as issues as the KdV-induced long wave pole in the nonlinear coefficient of the NLS equation, the derivation of NLS from KdV through perturbation theory, resonant effects that give the NLS equation a wide range of applicability, and numerical illustrations. The multiple scales/nonlinear perturbation theory is explicitly extended to two orders beyond that which yields the NLS equation; the wave envelope evolves under a generalized-NLS equation which is third order in space and quintically-nonlinear.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35Q55NLS-like (nonlinear Schrödinger) equations
37K40Soliton theory, asymptotic behavior of solutions