zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Geometric characterizations for variational minimization solutions of the 3-body problem. (English) Zbl 0980.70009
Summary: We prove that, for any given positive masses, the variational minimization solutions of the three-body problem in 3 or 2 are precisely planar equilateral triangle circular solutions found by J. Lagrange in 1772, and that the variational minimization solutions of the circular restricted three-body problem in 3 or 2 are also planar equilateral triangle circular solutions.
70F07Three-body problems
70G75Variational methods for dynamical systems
[1]P Rabinowitz. Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31: 157–184 · Zbl 0369.70017 · doi:10.1002/cpa.3160310203
[2]A Ambrosetti, V Coti Zelati. Periodic Solutions of Singular Lagrangian Systems. Birkhäuser, Basel, 1993
[3]G F Dell’Antonio. Classical solutions of a perturbed N-body system. In Topological Nonlinear Analysis II M Matzeu and A Vignoli ed Birkhäuser, 1997, 1–86
[4]U Bessi, V Coti Zelati. Symmetries and noncollision closed orbits for planar N-body type problems. Nonlinear Anal TMA, 1991, 16: 587–598 · Zbl 0715.70016 · doi:10.1016/0362-546X(91)90030-5
[5]V Coti Zelati. The periodic solutions of N-body type problems. Ann IHP Anal non linéaire, 1990, 7: 477–492
[6]V Coti Zelati. A class of periodic solutions for the N-body problem. Celestial Mech, 1989, 46: 177–186 · Zbl 0684.70006 · doi:10.1007/BF00053047
[7]M Degiovanni, F Giannoni. Dynamical systems with Newtonian type potentials. Ann Scuola Norm Super Pisa, 1989, 15: 467–494
[8]E Serra, S Terracini. Collisionless periodic solutions to some three-body problems. Arch Rational Mech Anal, 1992, 120: 305–325 · Zbl 0773.70009 · doi:10.1007/BF00380317
[9]C Siegle, J Moser. Lectures on Celestial Mechanics. Berlin: Springer, 1971
[10]W Gordon. A minimizing property of Keplerian orbits. Amer J Math, 1977, 99: 961–971 · Zbl 0378.58006 · doi:10.2307/2373993
[11]G Hardy, J Littlewood, G Polya. Inequalities. 2nd ed, Cambridge: University Press, 1952
[12]V Arnold, V Kozlov, A Neishtadt. Dynamical Systems, III, Mathematical Aspectc of Classical and Celestial Mechanics. Russian ed 1985, Berlin: Spinger, English ed, 1988
[13]K Meyer, G Hall. Introduction to Hamiltonian Systems and the N-body problems. Berlin: Springer, 1992
[14]A Wintner. Analytical Foundations of Celestial Mechanics. Princeton: Princeton University Press, 1941
[15]J Lagrange. Essai sur le probléme des trois corps. 1772, Ouvres, 1783, 3: 229–331
[16]R Abraham, J Marsden. Foundations of Mechanics. 2nd ed, London: Benjamin/Cummings, 1978
[17]L Euler. De motu rectilineo trium corpörum se mutuo attrahentium. Novi Comm Acad Sci Imp Petropll, 1767, 145–151.
[18]J H Wang. The Three Body Problem. Chinese ed, Beijing: Science Press, 1961