zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Determination of a control parameter in the two-dimensional diffusion equation. (English) Zbl 0982.65103

Summary: This paper considers the problem of finding w=w(x,y,t) and p=p(t) which satisfy

w t =w xx +w yy +p(t)w+φ,

in R×(0,T], w(x,y,0)=f(x,y), (x,y)R=[0,1]×[0,1], w is known on the boundary of R and also 0 1 0 1 w(x,y,t)dxdy=E(t), 0<tT, where E(t) is known.

Three different finite-difference schemes are presented for identifying the control parameter p(t), which produces, at any given time, a desired energy distribution in a portion of the spatial domain. The finite difference schemes developed for this purpose are based on the (1,5) fully explicit scheme, and the (5,5) Noye-Hayman (N-H) fully implicit technique, and the Peaceman and Rachford (P-R) alternating direction implicit (ADI) formula. These schemes are second-order accurate.

The ADI scheme and the 5-point fully explicit method use less central processor (CPU) time than the (5,5) N-H fully implicit scheme. The P-R ADI scheme and the (5,5) N-H fully implicit method have a larger range of stability than the (1,5) fully explicit technique. The results of numerical experiments are presented, and CPU times needed for this problem are reported.

65M32Inverse problems (IVP of PDE, numerical methods)
65M06Finite difference methods (IVP of PDE)
35K15Second order parabolic equations, initial value problems
35R30Inverse problems for PDE