zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Planning as constraint satisfaction: Solving the planning graph by compiling it into CSP. (English) Zbl 0983.68181
Summary: The idea of synthesizing bounded length plans by compiling planning problems into a combinatorial substrate, and solving the resulting encodings has become quite popular in recent years. Most work to-date has however concentrated on compilation to SATisfiability (SAT) theories and Integer Linear Programming (ILP). In this paper we will show that CSP is a better substrate for the compilation approach, compared to both SAT and ILP. We describe GP-CSP, a system that does planning by automatically converting Graphplan’s planning graph into a CSP encoding and solving it using standard CSP solvers. Our comprehensive empirical evaluation of GP-CSP demonstrates that it is superior to both the Blackbox system, which compiles planning graphs into SAT encodings, and an ILP-based planner in a wide range of planning domains. Our results show that CSP encodings outperform SAT encodings in terms of both space and time requirements in various problems. The space reduction is particularly important as it makes GP-CSP less susceptible to the memory blow-up associated with SAT compilation methods. The paper also discusses various techniques in setting up the CSP encodings, planning specific improvements to CSP solvers, and strategies for variable and value selection heuristics for solving the CSP encodings of different types of planning problems.
68T20AI problem solving (heuristics, search strategies, etc.)