zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A minimizing property of Lagrangian solutions. (English) Zbl 0988.70007
This short paper shows that Lagrangian solutions of three-body problem minimize the action functional. The main result states that any minimal regular solution of the three-body problem is precisely the Lagrangian elliptic solution. The authors also give a brief review of Keplerian orbits and of the Gordon’s result.
70F07Three-body problems
[1]R. Abraham, J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings, 1978
[2]W. Gordon, A minimizing property of Keplerian orbits, Amer. J. of Math., 1977, 99:961–971 · Zbl 0378.58006 · doi:10.2307/2373993
[3]H. Pollard, Celestial Mechanics, The Mathematical Association of America, 1976
[4]J. Lagrange, Essai sur le probléme des trois crops, 1772, Ouvers, 1783, 3:229–331
[5]A. Chenciner, N. Desolneux, Minima de l’intégrale d’action etéquilibres relatifs de n corps, C. R. Acad. Sci. ParisI, serie, t.32, 1998, 1209–1212
[6]Y. Long, S. Q. Zhang, Geometric characterization for variational minimization solutions of the 3-body problem, Chinese Sci. Bull., 1999, 44:1653–1655 · Zbl 02065817 · doi:10.1007/BF03183482
[7]C. Siegel, J. Moser, Lectures on Celestial Mechanics, Berlin:Springer, 1971