zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Self-similar processes in communications networks. (English) Zbl 0988.90003

From the introduction: The main objective of the present paper is to review and briefly discuss the known definitions and properties of second-order self-similar discrete-time processes, to supplement them with some more general conditions of self-similarity, to present a model for ATM cell traffic, and, finally, to find the conditions of model self-similarity.

Section II contains definitions of exactly and asymptotically second-order self-similar processes, which we adopt. The most essential second-order properties of these processes are presented. A novelty here is the presentation of some unknown proofs and properties, as well as the presentation of all these properties in one paper. A comparison of different definitions is done, with discussion and comments.

Section III gives a model of ATM cell traffic, the necessary and sufficient conditions for its exact self-similarity and a sufficient condition for its asymptotic self-similarity. The conditions are more general than others obtained earlier; they contain the known conditions as special cases. We reference earlier papers which are particularly relevant to the model and also discuss some other known models, which are linked, to our model.

The proots of our results are placed in Appendices A–D. In this presentation, we need to use the concepts of the Karamata slow- and regular-variation theory. The definitions of slowly and regularly varying functions and sequences are given in Appendix E. For other known results in the theory, we refer to N. H. Bingham, C. M. Goldie and J. L. Teugels [Regular Variation. Cambridge, New York: Cambridge Univ. Press (1987; Zbl 0617.26001)]. A brief presentation of our results was given in [N. Likhanov, B . Tsybakov and N. D. Georganas, “A model of self-similar communications-network traffic”, Proc. Int. Conf. “Distributed Computer Communication Networks” (DCCN’97) (Tel-Aviv, Israel, 1997), 212-217 (1997)].

90B18Communication networks (optimization)
94A05Communication theory
90B20Traffic problems