zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modeling epidemics caused by respiratory syncytial virus (RSV). (English) Zbl 0988.92025

Summary: Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory tract infection in children. We use models of RSV transmission to interpret the pattern of seasonal epidemics of RSV disease observed in different countries, and to estimate epidemic and eradication thresholds for RSV infection. We compare the standard SIRS model with a more realistic model of RSV transmission in which individuals acquire immunity gradually after repeated exposure to infection. The models are fitted to series of monthly hospital case reports of RSV disease from developed and developing countries. The models can explain many of the observed patterns: regular yearly outbreaks in some countries, and in other countries cycles of alternating larger and smaller annual epidemics, with shifted maxima in alternate years.

Previously these patterns have been attributed to the transmission of different strains of RSV. In some countries the timing of epidemics is not consistent with increased social contact among school children during term time being the major driving mechanism. Climatic factors appear to be more important. Qualitatively different models gave equally good fits to the data series, but estimates of the transmission parameter were different by a factor of 4. Estimates of the basic reproduction number (R 0 ) ranged from 1.2 to 2.1 with the SIRS model, and from 5.4 to 7.1 with the model with gradual acquisition of partial immunity.

92C60Medical epidemiology