zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback. (English) Zbl 0989.93008
Summary: This paper presents for the first time a solution to the problem of decentralized adaptive asymptotic tracking for a new class of large-scale systems using nonlinear output feedback. The proposed constructive approach does not require any matching conditions on the parametric uncertainties nor growth conditions of any kind on the subsystem and interacting output nonlinearities. Any decentralized system in the family may have an unknown, nonzero equilibrium point. Partially decentralized reduced-order filters are presented to recover the unmeasured states. The recursive, decentralized, output-feedback design procedure is illustrated in a practical example of two inverted pendulums on carts without velocity measurements. The effectiveness of the decentralized algorithm is supported by simulation results.
MSC:
93A14Decentralized systems
93C40Adaptive control systems