zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. (English) Zbl 0992.93058
Summary: Biped robots form a subclass of legged or walking robots. The study of mechanical legged motion has been motivated by its potential use as a means of locomotion in rough terrain, as well as its potential benefits to prothesis development and testing. This paper concentrates on issues related to the automatic control of biped robots. More precisely, its primary goal is to contribute a means to prove asymptotically-stable walking in planar, under actuated biped robot models. Since normal walking can be viewed as a periodic solution of the robot model, the method of Poincaré sections is the natural means to study asymptotic stability of a walking cycle. However, due to the complexity of the associated dynamic models, this approach has had limited success. The principal contribution of the present work is to show that the control strategy can be designed in a way that greatly simplifies the application of the method of Poincaré to a class of biped models, and, in fact, to reduce the stability assessment problem to the calculation of a continuous map from a subinterval of to itself. The mapping in question is directly computable from a simulation model. The stability analysis is based on a careful formulation of the robot model as a system with impulse effects and the extension of the method of Poincaré sections to this class of models.
93C85Automated control systems (robots, etc.)
37N35Dynamical systems in control
70B15Mechanisms, robots (kinematics)
93C10Nonlinear control systems