zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Quantized frame expansions with erasures. (English) Zbl 0992.94009
Summary: Frames have been used to capture significant signal characteristics, provide numerical stability of reconstruction, and enhance resilience to additive noise. This paper places frames in a new setting, where some of the elements are deleted. Since proper subsets of frames are sometimes themselves frames, a quantized frame expansion can be a useful representation even when some transform coefficients are lost in transmission. This yields robustness to losses in packet networks such as the Internet. With a simple model for quantization error, it is shown that a normalized frame minimizes mean-squared error if and only if it is tight. With one coefficient erased, a tight frame is again optimal among normalized frames, both in average and worst-case scenarios. For more erasures, a general analysis indicates some optimal designs. Being left with a tight frame after erasures minimizes distortion, but considering also the transmission rate and possible erasure events complicates optimizations greatly.
MSC:
94A12Signal theory (characterization, reconstruction, filtering, etc.)
42C15General harmonic expansions, frames
94A29Source coding