zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of logistic growth models. (English) Zbl 0993.92028

Summary: A variety of growth curves have been developed to model both unpredated, intraspecific population dynamics and more general biological growth. Most predictive models are shown to be based on variations of the classical Verhulst logistic growth equation. We review and compare several such models and analyse properties of interest for these. We also identify and detail several associated limitations and restrictions.

A generalized form of the logistic growth curve is introduced which incorporates these models as special cases. Several properties of the generalized growth are also presented. We furthermore prove that the new growth form incorporates additional growth models which are markedly different from the logistic growth and its variants, at least in their mathematical representation. Finally, we give a brief outline of how the new curve could be used for curve-fitting.

MSC:
92D25Population dynamics (general)
34C60Qualitative investigation and simulation of models (ODE)
92B05General biology and biomathematics