zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. (English) Zbl 0997.90017
Summary: We present simulations of evacuation processes using a recently introduced cellular automaton model for pedestrian dynamics. This model applies a bionics approach to describe the interaction between the pedestrians using ideas from chemotaxis. Here we study a rather simple situation, namely the evacuation from a large room with one or two doors. It is shown that the variation of the model parameters allows to describe different types of behaviour, from regular to panic. We find a non-monotonic dependence of the evacuation times on the coupling constants. These times depend on the strength of the herding behaviour, with minimal evacuation times for some intermediate values of the couplings, i.e., a proper combination of herding and use of knowledge about the shortest way to the exit.
90B20Traffic problems