zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Legendre wavelets method for constrained optimal control problems. (English) Zbl 1001.49033
Summary: A numerical method for solving nonlinear optimal control problems with inequality constraints is presented in this paper. The method is based upon Legendre wavelet approximations. The properties of Legendre wavelets are first presented. The operational matrix of integration and the Gauss method are then utilized to reduce the optimal control problem to the solution of algebraic equations. The inequality constraints are converted to a system of algebraic equalities; these equalities are then collocated at the Gauss nodes. Illustrative examples are included to demonstrate the validity and applicability of the technique.
MSC:
49M30Other numerical methods in calculus of variations
49J15Optimal control problems with ODE (existence)
42C40Wavelets and other special systems
65T60Wavelets (numerical methods)