zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symbolic computation of high order compact difference schemes for three dimensional linear elliptic partial differential equations with variable coefficients. (English) Zbl 1001.65112
Summary: We present a symbolic computation procedure for deriving various high order compact difference approximation schemes for certain three dimensional linear elliptic partial differential equations with variable coefficients. Based on the Maple software package, we approximate the leading terms in the truncation error of the Taylor series expansion of the governing equation and obtain a 19 point fourth order compact difference scheme for a general linear elliptic partial differential equation. A test problem is solved numerically to validate the derived fourth order compact difference scheme. This symbolic derivation method is simple and can be easily used to derive high order difference approximation schemes for other similar linear elliptic partial differential equations.
MSC:
65N06Finite difference methods (BVP of PDE)
35J25Second order elliptic equations, boundary value problems
65Y15Packaged methods in numerical analysis
Software:
BILUM; Maple