zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids. (English) Zbl 1005.65024

Summary: We use the support-operator method to derive new discrete approximations of the divergence, gradient, and curl using discrete analogs of the integral identities satisfied by the differential operators. These new discrete operators are adjoint to the previously derived natural discrete operators defined using ‘natural’ coordinate-invariant definitions, such as Gauss’ theorem for the divergence.

The natural operators cannot be combined to construct discrete analogs of the second-order operators div grad, grad div, and curl curl because of incompatibilities in domains and in the ranges of values for the operators. The same is true for the adjoint operators. However, the adjoint operators have complementary domains and ranges of values and the combined set of natural and adjoint operators allow a consistent formulation for all the compound discrete operators.

We also prove that the operators satisfy discrete analogs of the major theorems of vector analysis relating the differential operators, including 𝐝𝐢𝐯𝐀 =0 if and only if 𝐀 =𝐜𝐮𝐫𝐥𝐁 ;𝐜𝐮𝐫𝐥𝐀 =0 if and only if 𝐀 =𝐠𝐫𝐚𝐝ϕ.

MSC:
65D25Numerical differentiation