zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Time series forecasting using a hybrid ARIMA and neural network model. (English) Zbl 1006.68828
Summary: Autoregressive integrated moving average (ARIMA) is one of the popular linear models in time series forecasting during the past three decades. Recent research activities in forecasting with artificial neural networks (ANNs) suggest that ANNs can be a promising alternative to the traditional linear methods. ARIMA models and ANNs are often compared with mixed conclusions in terms of the superiority in forecasting performance. In this paper, a hybrid methodology that combines both ARIMA and ANN models is proposed to take advantage of the unique strength of ARIMA and ANN models in linear and nonlinear modeling. Experimental results with real data sets indicate that the combined model can be an effective way to improve forecasting accuracy achieved by either of the models used separately.
MSC:
68U99Computing methodologies
68T05Learning and adaptive systems