zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Host-based intrusion detection using dynamic and static behavioral models. (English) Zbl 1007.68952
Summary: Intrusion detection has emerged as an important approach to network security. In this paper, we adopt an anomaly detection approach by detecting possible intrusions based on program or user profiles built from normal usage data. In particular, program profiles based on Unix system calls and user profiles based on Unix shell commands are modeled using two different types of behavioral models for data mining. The dynamic modeling approach is based on hidden Markov models (HMM) and the principle of maximum likelihood, while the static modeling approach is based on event occurrence frequency distributions and the principle of minimum cross entropy. The novelty detection approach is adopted to estimate the model parameters using normal training data only, as opposed to the classification approach which has to use both normal and intrusion data for training. To determine whether or not a certain behavior is similar enough to the normal model and hence should be classified as normal, we use a scheme that can be justified from the perspective of hypothesis testing. Our experimental results show that the dynamic modeling approach is better than the static modeling approach for the system call datasets, while the dynamic modeling approach is worse for the shell command datasets. Moreover, the static modeling approach is similar in performance to instance-based learning reported previously by others for the same shell command database but with much higher computational and storage requirements than our method.
MSC:
68U99Computing methodologies
68T10Pattern recognition, speech recognition