zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A survey of quasi-Newton equations and quasi-Newton methods for optimization. (English) Zbl 1007.90069
Summary: Quasi-Newton equations play a central role in quasi-Newton methods for optimization and various quasi-Newton equations are available. This paper gives a survey on these quasi-Newton equations and studies properties of quasi-Newton methods with updates satisfying different quasi-Newton equations. These include single-step quasi-Newton equations that use only gradient information and that use both gradient and function value information in one step, and multi-step quasi-Newton equations that use the gradient information in last m steps. Main properties of quasi-Newton methods with updates satisfying different quasi-Newton equations are studied. These properties include the finite termination property, invariance, heredity of positive definite updates, consistency of search directions, global convergence and local superlinear convergence properties.
90C30Nonlinear programming
90C53Methods of quasi-Newton type