zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A survey of the state-of-the-art of common due date assignment and scheduling research. (English) Zbl 1009.90054
Summary: We aim at providing a unified framework of the common due date assignment and scheduling problems in the deterministic case by surveying the literature concerning the models involving single machine and parallel machines. The problems with due date determination have received considerable attention in the last 15 years due to the introduction of new methods of inventory management such as just-in-time concepts. The common due date model corresponds, for instance, to an assembly system in which the components of the product should be ready at the same time, or to a shop where several jobs constitute a single customer’s order. In the problems under consideration, the objective is to find an optimal value of the common due date and the related optimal schedule in order to optimize a given criterion based on the due date and the completion times of jobs. The results on the algorithms and complexity of the common due date assignment and scheduling problems are summarized.
MSC:
90B35Scheduling theory, deterministic