zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear dynamics in the Cournot duopoly game with heterogeneous players. (English) Zbl 1010.91006
Summary: We analyze a nonlinear discrete-time Cournot duopoly game, where players have heterogeneous expectations. Two types of players are considered: boundedly rational and naive expectations. In this study we show that the dynamics of the duopoly game with players whose beliefs are heterogeneous, may become complicated. The model gives more complex chaotic and unpredictable trajectories as a consequence of increasing the speed of adjustment of boundedly rational player. The equilibrium points and local stability of the duopoly game are investigated. As some parameters of the model are varied, the stability of the Nash equilibrium point is lost and the complex (periodic or chaotic) behavior occurs. Numerical simulations are presented to show that players with heterogeneous beliefs make the duopoly game behave chaotically. Also, we get the fractal dimension of the chaotic attractor of our map which is equivalent to the dimension of Henon map.
MSC:
91A15Stochastic games