zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Randomized addition-subtraction chains as a countermeasure against power attacks. (English) Zbl 1012.94549
Koç, Çetin K. (ed.) et al., Cryptographic hardware and embedded systems - CHES 2001. 3rd international workshop, Paris, France, May 14-16, 2001. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 2162, 39-50 (2001).
Summary: Power analysis attacks on elliptic curve cryptosystems and various countermeasures against them were first discussed by J.-S. Coron [Lect. Notes Comput. Sci. 1560, 29-42 (1999; Zbl 0964.94018)]. All proposed countermeasures are based on the randomization or blinding of the input parameters of the binary algorithm. We propose a countermeasure that randomizes the binary algorithm itself. Our algorithm needs approximately 9% more additions than the ordinary binary algorithm, but makes power analysis attacks really difficult.

MSC:
94A60Cryptography
14G50Applications of algebraic geometry to coding theory and cryptography
68P25Data encryption