zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Geometric stability switch criteria in delay differential systems with delay dependent parameters. (English) Zbl 1013.92034

Summary: In most applications of delay differential equations in population dynamics, the need of incorporation of time delays is often the result of the existence of some stage structure. Since the through-stage survival rate is often a function of time delays, it is easy to conceive that these models may involve some delay dependent parameters. The presence of such parameters often greatly complicates the task of an analytical study of such models. The main objective of this paper is to provide practical guidelines that combine graphical information with analytical work to effectively study the local stability of some models involving delay dependent parameters.

Specifically, we show that the stability of a given steady state is simply determined by the graphs of some functions of τ which can be expressed explicitly and thus can be easily depicted by Maple and other popular software. In fact, for most application problems, we need only look at one such function and locate its zeros. This function often has only two zeros, providing thresholds for stability switches.

The common scenario is that as time delay increases, stability changes from stable to unstable to stable, implying that a large delay can be stabilizing. This scenario often contradicts the one provided by similar models with only delay independent parameters.


MSC:
92D25Population dynamics (general)
34K20Stability theory of functional-differential equations
34K18Bifurcation theory of functional differential equations
Software:
Maple