zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Differential equations with several deviating arguments: Sturmian comparison method in oscillation theory. II. (English) Zbl 1016.34066

This is a continuation of the investigation on equations with two deviating arguments stated by the authors [Electron. J. Differ. Equ. 2001, Paper No. 40 (2001; Zbl 0982.34056)]. Consider the functional-differential equation of the mixed type

x ˙(t)+a 1 (t)x(r(t))+a 2 (t)x(p(t))=0,tt 0 ,(1)

with nonnegative coefficients a i (t), and r(t)t,p(t)t for tt 0 . Sufficient conditions for all solutions to (1) to be oscillating are obtained by using the Sturmian comparison method. The examples show that these conditions are rather sharp. The authors further obtain sufficient conditions for the existence of a nonoscillatory solution to (1). Similar nonoscillation results are obtained for (1) with nonpositive coefficients a i (t)0,i=1,2· The main idea of the Sturmian comparison method is to obtain the widest possible set of functional-differential inequalities (the “testing” equations) associated with (1), such that at least one of the solutions is a so called “slowly oscillating” solution. This together with the Sturmian comparison theorem (theorem 2.1 in this paper) yields that all solutions to (1) oscillate. The above proposed method is constructive. It also has the advantage that one needs to find only one solution which has the “slowly oscillating” property instead of checking the fact that all solutions to the “test” equation oscillate. It seems that this method has been used a lots in the references by the second author himself.

MSC:
34K11Oscillation theory of functional-differential equations