zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix. (English) Zbl 1021.42020
For any d×d dilation matrix M it is proved how to construct compactly supported tight wavelet frames and orthonormal wavelet bases having exponential decay; the bases have the form ψ j,k =|detM| j/2 ψ(M j ·-k),j,k d for some functions ψL 2 ( d ); they are derived from refinable functions ϕ, in the sense that they have the form ψ=|detM| k d b k ϕ(M·-k) for some sequence {b k } k d . One of the main results is as follows. Given any positive integer r, there exists a collection Ψ of at most (3/2) d |detM| functions in C r ( d ), derived from a refinable function with compact support, such that Ψ has vanishing moments of order r and generates a tight wavelet frame for L 2 ( d ).
MSC:
42C40Wavelets and other special systems