zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mathematical and numerical models for coupling surface and groundwater flows. (English) Zbl 1023.76048
Summary: We present some results on coupling Navier-Stokes with shallow water equations for surface flows, and with Darcy’s equation for groundwater flows. We discuss suitable interface conditions and show the well-posedness of the coupled problem in the case of a linear Stokes problem. An iterative method is proposed to compute the solution. At each step this method requires the solution of one problem in the fluid part and one in the porous medium. Finally, we introduce Steklov-Poincaré equation associated with the coupled problem.
76S05Flows in porous media; filtration; seepage
76D05Navier-Stokes equations (fluid dynamics)
35Q35PDEs in connection with fluid mechanics
86A05Hydrology, hydrography, oceanography