zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the global convergence of an SLP-filter algorithm that takes EQP steps. (English) Zbl 1023.90060

Summary: A global convergence proof is presented for a class of trust region filter-type methods for nonlinear programming. Such methods are characterized by their use of the dominance concept of multiobjective optimization, instead of a penalty parameter whose adjustment can be problematic. The methods are based on successively solving linear programming subproblems for which effective software is readily available. The methods also permit the use of steps calculated on the basis of an equality constrained quadratic programming model, which enables rapid convergence to take place for problems in which second order information is important.

The proof technique is presented in a fairly general context, allowing a range of specific algorithm choices associated with choosing the quadratic model, updating the trust region radius and with feasibility restoration.


MSC:
90C30Nonlinear programming
90C29Multi-objective programming; goal programming
Software:
ipfilter