zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A genetic algorithm for the vehicle routing problem. (English) Zbl 1026.90013
Summary: This study considers the application of a genetic algorithm (GA) to the basic vehicle routing problem (VRP), in which customers of known demand are supplied from a single depot. Vehicles are subject to a weight limit and, in some cases, to a limit on the distance travelled. Only one vehicle is allowed to supply each customer. The best known results for benchmark VRPs have been obtained using tabu search or simulated annealing. GAs have seen widespread application to various combinatorial optimisation problems, including certain types of vehicle routing problem, especially where time windows are included. However, they do not appear to have made a great impact so far on the VRP as described here. In this paper, computational results are given for the pure GA which is put forward. Further results are given using a hybrid of this GA with neighbourhood search methods, showing that this approach is competitive with tabu search and simulated annealing in terms of solution time and quality.
90B20Traffic problems
90C59Approximation methods and heuristics