zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A semi-Lagrangian high-order method for Navier-Stokes equations. (English) Zbl 1028.76026
Summary: We present a semi-Lagrangian method for advection-diffusion and incompressible Navier-Stokes equations. The focus is on constructing stable schemes of second-order temporal accuracy, as this is a crucial element for the successful application of semi-Lagrangian methods to turbulence simulations. We implement the method in the context of unstructured spectral/hp element discretization, which allows for efficient search-interpolation procedures as well as for illumination of the nonmonotonic behavior of the temporal (advection) error of the form 𝒪(Δt k +Δx p+1 Δt). We present numerical results that validate this error estimate for the advection-diffusion equation, and we document that such estimate is also valid for the Navier-Stokes equations at moderate or high Reynolds number. Two- and three-dimensional laminar and transitional flow simulations suggest that semi-Lagrangian schemes are more efficient than their Eulerian counterparts for high-order discretizations on nonuniform grids.
76M10Finite element methods (fluid mechanics)
76M22Spectral methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)