zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analyzing bagging. (English) Zbl 1029.62037

Summary: Bagging is one of the most effective computationally intensive procedures to improve on unstable estimators or classifiers, useful especially for high dimensional data set problems. Here we formalize the notion of instability and derive theoretical results to analyze the variance reduction effect of bagging (or variants thereof) in mainly hard decision problems, which include estimation after testing in regression and decision trees for regression functions and classifiers. Hard decisions create instability, and bagging is shown to smooth such hard decisions, yielding smaller variance and mean squared error.

With theoretical explanations, we motivate subagging based on subsampling as an alternative aggregation scheme. It is computationally cheaper but still shows approximately the same accuracy as bagging. Moreover, our theory reveals improvements in first order and in line with simulation studies. In particular, we obtain an asymptotic limiting distribution at the cube-root rate for the split point when fitting piecewise constant functions. Denoting sample size by n, it follows that in a cylindric neighborhood of diameter n -1/3 of the theoretically optimal split point, the variance and mean squared error reduction of subagging can be characterized analytically. Because of the slow rate, our reasoning also provides an explanation on the global scale for the whole covariate space in a decision tree with finitely many splits.

62G08Nonparametric regression
62G09Nonparametric statistical resampling methods
62H30Classification and discrimination; cluster analysis (statistics)
68T10Pattern recognition, speech recognition