zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic equivalence of estimating a Poisson intensity and a positive diffusion drift. (English) Zbl 1029.62071

Summary: We consider a diffusion model of small variance type with positive drift density varying in a nonparametric set. We investigate Gaussian and Poisson approximations to this model in the sense of asymptotic equivalence of experiments. It is shown that observation of the diffusion process until its first hitting time of level one is a natural model for the purpose of inference on the drift density.

The diffusion model can be discretized by the collection of level crossing times for a uniform grid of levels. The random time increments are asymptotically sufficient and obey a nonparametric regression model with independent data. This decoupling is then used to establish asymptotic equivalence to Gaussian signal-in-white-noise and Poisson intensity models on the unit interval, and also to an i.i.d. model when the diffusion drift function f is a probability density. As an application, we find the exact asymptotic minimax constant for estimating the diffusion drift density with sup-norm loss.

MSC:
62M05Markov processes: estimation
62G08Nonparametric regression
62G07Density estimation
62B15Theory of statistical experiments