*(English)*Zbl 1032.92033

Summary: Natural populations, whose generations are non-overlapping, can be modelled by difference equations that describe how the populations evolve in discrete time-steps. In the 1970s, ecological research detected chaos and other forms of complex dynamics in simple population dynamics models, initiating a new research tradition in ecology. However, in former studies most of the investigations of complex population dynamics were mainly concentrated on single populations instead of higher dimensional ecological systems. This paper reports a recent study on the complicated dynamics occurring in a class of discrete-time models of predator-prey interactions based on the age-structure of predators.

The complexities include (a) non-unique dynamics, meaning that several attractors coexist; (b) antimonotonicity; (c) basins of attraction (defined as the set of the initial conditions leading to a certain type of attractors) with fractal properties, consisting of patterns of self-similarity and fractal basin boundaries; (d) intermittency; (e) supertransients; and (f) chaotic attractors.