zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamic complexities in predator–prey ecosystem models with age-structure for predator. (English) Zbl 1032.92033

Summary: Natural populations, whose generations are non-overlapping, can be modelled by difference equations that describe how the populations evolve in discrete time-steps. In the 1970s, ecological research detected chaos and other forms of complex dynamics in simple population dynamics models, initiating a new research tradition in ecology. However, in former studies most of the investigations of complex population dynamics were mainly concentrated on single populations instead of higher dimensional ecological systems. This paper reports a recent study on the complicated dynamics occurring in a class of discrete-time models of predator-prey interactions based on the age-structure of predators.

The complexities include (a) non-unique dynamics, meaning that several attractors coexist; (b) antimonotonicity; (c) basins of attraction (defined as the set of the initial conditions leading to a certain type of attractors) with fractal properties, consisting of patterns of self-similarity and fractal basin boundaries; (d) intermittency; (e) supertransients; and (f) chaotic attractors.

MSC:
92D40Ecology
39A10Additive difference equations
37N25Dynamical systems in biology