zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Gaussian model selection. (English) Zbl 1037.62001

Summary: Our purpose in this paper is to provide a general approach to model selection via penalization for Gaussian regression and to develop our point of view about this subject. The advantage and importance of model selection come from the fact that it provides a suitable approach to many different types of problems, starting from model selection per se (among a family of parametric models, which one is more suitable for the data at hand), which includes for instance variable selection in regression models, to nonparametric estimation, for which it provides a very powerful tool that allows adaptation under quite general circumstances.

Our approach to model selection also provides a natural connection between the parametric and nonparametric points of view and copes naturally with the fact that a model is not necessarily true. The method is based on the penalization of a least squares criterion which can be viewed as a generalization of Mallows’ C p . A large part of our efforts will be put on choosing properly the list of models and the penalty function for various estimation problems, like classical variable selection or adaptive estimation for various types of l p -bodies.


MSC:
62A01Foundations and philosophical topics in statistics
62M10Time series, auto-correlation, regression, etc. (statistics)
62G07Density estimation
62C20Statistical minimax procedures
41A46Approximation by arbitrary nonlinear expressions; widths and entropy
62J05Linear regression