zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stable solitons in coupled Ginzburg-Landau equations describing Bose-Einstein condensates and nonlinear optical waveguides and cavities. (English) Zbl 1038.35127

Summary: We introduce a model of a two-core system, based on an equation of the Ginzburg-Landau (GL) type, coupled to another GL equation, which may be linear or nonlinear. One core is active, featuring intrinsic linear gain, while the other one is lossy. The difference from previously studied models involving a pair of linearly coupled active and passive cores is that the stabilization of the system is provided not by a linear diffusion-like term, but rather by a cubic or quintic dissipative term in the active core.

Physical realizations of the models include systems from nonlinear optics (semiconductor waveguides or optical cavities), and a double-cigar-shaped Bose-Einstein condensate with a negative scattering length, in which the active “cigar” is an atom laser. The replacement of the diffusion term by the nonlinear loss is principally important, as diffusion does not occur in these physical media, while nonlinear loss is possible. A stability region for solitary pulses is found in the system’s parameter space by means of direct simulations. One border of the region is also found in an analytical form by means of a perturbation theory.

Moving pulses are studied too. It is concluded that collisions between them are completely elastic, provided that the relative velocity is not too small. The pulses withstand multiple tunneling through potential barriers. Robust quantum-rachet regimes of motion of the pulse in a time-periodic asymmetric potential are found as well.

35Q55NLS-like (nonlinear Schrödinger) equations
35Q51Soliton-like equations
82B10Quantum equilibrium statistical mechanics (general)
78A60Lasers, masers, optical bistability, nonlinear optics