×

Stabilizing dispersal delays in predator-prey metapopulation models. (English) Zbl 1038.92032

Summary: Time delays produced by dispersal are shown to stabilize Lotka-Volterra predator-prey models. The models are formulated as integrodifferential equations that describe local predator-prey dynamics and either intrapatch or interpatch dispersal. Dispersing individuals may (or may not) differ in the duration of their trips; these differences are captured via a distributed delay in the models. Our results include those of previous studies as special cases and show that the stabilizing effect continues to operate when the dispersal process is modeled more realistically.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
45J05 Integro-ordinary differential equations
34K60 Qualitative investigation and simulation of models involving functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Beretta, E.; Kuang, Y., Geometric stability switch criteria in delay differential systems with delay-dependent parameters, SIAM J. Math. Anal. (2001)
[2] Caswell, H., A simulation study of a time lag population model, J. Theor. Biol., 34, 419-439 (1972)
[3] Comins, H. N.; Blatt, D. W.E., Prey-predator models in spatially heterogeneous environments, J. Theor. Biol., 48, 75-83 (1974)
[4] Crawley, M. J., Natural Enemies: The Population Biology of Predators, Parasites and Diseases (1992), Blackwell Scientific: Blackwell Scientific London
[5] Cushing, J. M., Integrodifferential Equations and Delay Models in Population Dynamics (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0363.92014
[6] Friedman, B., Eigenvalues of composite matrices, Proc. Cambridge Philos. Soc., 57, 37-49 (1961) · Zbl 0143.26401
[7] Gause, G. F., The Struggle for Existence (1934), Williams & Wilkins: Williams & Wilkins Baltimore
[8] Gotelli, N. J., A Primer of Ecology (1995), Sinauer: Sinauer Sunderland
[9] Hanski, I., Metapopulation Ecology (1999), Oxford University Press: Oxford University Press Oxford
[10] Hardy, G.; Littlewood, J. E.; Pólya, G., Inequalities (1952), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0047.05302
[11] Hassell, M. P., The Dynamics of Arthropod Predator-Prey Systems (1978), Princeton University Press: Princeton University Press Princeton · Zbl 0429.92018
[12] Holt, R. D., Spatial heterogeneity, indirect interaction, and the coexistence of prey species, Am. Nat., 124, 377-406 (1984)
[13] Hutchinson, G. E., Circular causal systems in ecology, Ann. N.Y. Acad. Sci., 50, 221-246 (1948)
[14] Jansen, V. A.A., Regulation of predator-prey systems through spatial interactions: A possible solution to the paradox of enrichment, Oikos, 74, 384-390 (1995)
[15] Jansen, V. A.A.; de Roos, A. M., The role of space in reducing predator-prey cycles, The Geometry of Ecological Interactions: Simplifying Spatial Complexity (2000), Cambridge University Press: Cambridge University Press Cambridge, p. 183-201
[16] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Academic Press: Academic Press Boston · Zbl 0777.34002
[17] Lotka, A. J., Elements of Physical Biology (1926), Williams & Wilkins: Williams & Wilkins Baltimore · JFM 51.0416.06
[18] MacDonald, N., Biological Delay Systems: Linear Stability Theory (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0669.92001
[19] May, R. M., Stability and Complexity in Model Ecosystems (1973), Princeton University Press: Princeton University Press Princeton
[20] Mueller, L. D.; Joshi, A., Stability in Model Populations (2000), Princeton University Press: Princeton University Press Princeton
[21] Murdoch, W. W.; Briggs, C. J.; Nisbet, R. M.; Gurney, W. S.C.; Stewart-Oaten, A., Aggregation and stability in metapopulation models, Am. Nat., 140, 41-58 (1992)
[22] Murdoch, W. W.; Oaten, A., Predation and population stability, Adv. Ecol. Res., 9, 1-131 (1975)
[23] Nicholson, A. J.; Bailey, V. A., The balance of animal populations, Proc. Zool. Soc. London, 1, 551-598 (1935)
[24] Nisbet, R. M.; Briggs, C. J.; Gurney, W. S.C.; Murdoch, W. W.; Stewart-Oaten, A., Two-patch metapopulation dynamics, (Levin, S. A.; Steele, J. H.; Powell, T., Patch Dynamics in Terrestrial, Freshwater, and Marine Ecosystems, 96 (1992), Springer-Verlag: Springer-Verlag Berlin)
[25] Taylor, A. D., Metapopulations, dispersal, and predator-prey dynamics: An overview, Ecology, 71, 429-436 (1990)
[26] Volterra, V., Leçons sur la théorie mathématique de la lutte pour la vie (1931), Gauthier-Villars: Gauthier-Villars Paris · JFM 57.0466.02
[27] Wangersky, P. J.; Cunningham, W. J., On time lags in equations of growth, Proc. Natl. Acad. Sci. U.S.A., 42, 699-702 (1956) · Zbl 0072.37005
[28] Wangersky, P. J.; Cunningham, W. J., Time lag in population models, Cold Spring Harbor Symp. Quant. Biol., 22, 329-338 (1957)
[29] Wangersky, P. J.; Cunningham, W. J., Time lag in prey-predator population models, Ecology, 38, 136-139 (1957)
[30] Weisser, W. W.; Hassell, M. P., Animals ‘on the move’ stabilise host-parasitoid systems, Proc. R. Soc. London B, 263, 749-754 (1996)
[31] Weisser, W. W.; Jansen, V. A.A.; Hassell, M. P., The effects of a pool of dispersers on host-parasitoid systems, J. Theor. Biol., 189, 413-425 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.