zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Deformation quantization in quantum mechanics and quantum field theory. (English) Zbl 1039.53104
Mladenov, Ivaïlo M. (ed.) et al., Proceedings of the 4th international conference on geometry, integrability and quantization, Sts. Constantine and Elena, Bulgaria, June 6–15, 2002. Sofia: Coral Press Scientific Publishing (ISBN 954-90618-4-1/pbk). 11-41 (2003).
The concept of deformation quantization and its role in quantum physics is reviewed. The deformation approach is compared with the Hilbert space and Feynman’s path integral approaches to quantum mechanics and illustrated for the case of a simple harmonic oscillator, for an oscillator coupled to an external source, and for a quantum field theory of scalar bosons. A remarkable formula of A. S. Cattaneo and G. Felder [Commun. Math. Phys. 212, 591–611 (2000; Zbl 1038.53088)] which relates Kontsevich’s star product to the expectation value of a product of functions on a Poisson space is also indicated.
MSC:
53D55Deformation quantization, star products
81T70Quantization in field theory; cohomological methods