zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Detecting differentially expressed genes in microarrays using Bayesian model selection. (English) Zbl 1041.62090

Summary: DNA microarrays open up a broad new horizon for investigators interested in studying the genetic determinants of disease. The high throughput nature of these arrays, where differential expression for thousands of genes can be measured simultaneously, creates an enormous wealth of information, but also poses a challenge for data analysis because of the large multiple testing problem involved. The solution has generally been to focus on optimizing false-discovery rates while sacrificing power. The drawback of this approach is that more subtle expression differences will be missed that might give investigators more insight into the genetic environment necessary for a disease process to take hold.

We introduce a new method for detecting differentially expressed genes based on a high-dimensional model selection technique, Bayesian ANOVA for microarrays (BAM), which strikes a balance between false rejections and false nonrejections. The basis of the new approach involves a weighted average of generalized ridge regression estimates that provides the benefits of using shrinkage estimation combined with model averaging. A simple graphical tool based on the amount of shrinkage is developed to visualize the trade-off between low false-discovery rates and finding more genes.

Simulations are used to illustrate BAM’s performance, and the method is applied to a large database of colon cancer gene expression data. Our working hypothesis in the colon cancer analysis is that large differential expressions may not be the only ones contributing to metastasis – in fact, moderate changes in expression of genes may be involved in modifying the genetic environment to a sufficient extent for metastasis to occur. A functional biological analysis of gene effects found by BAM, but not other false-discovery-based approaches, lends support to this hypothesis.

62P10Applications of statistics to biology and medical sciences
92C40Biochemistry, molecular biology
62F15Bayesian inference
62J10Analysis of variance and covariance
62J07Ridge regression; shrinkage estimators