zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hopf bifurcating periodic orbits in a ring of neurons with delays. (English) Zbl 1041.68079
Summary: In this paper, we consider a ring of neurons with self-feedback and delays. The linear stability of the model is investigated by analyzing the associated characteristic transcendental equation. Based on the normal form approach and the center manifold theory, we derive the formula for determining the properties of Hopf bifurcating slowly oscillating periodic orbits for a ring of neurons with delays, including the direction of Hopf bifurcation, stability of the Hopf bifurcating slowly oscillating periodic orbits, and so on. Moreover, by means of the symmetric bifurcation theory of delay differential equations coupled with representation theory of standard dihedral groups, we not only investigate the effect of synaptic delay of signal transmission on the pattern formation, but also obtain some important results about the spontaneous bifurcation of multiple branches of periodic solutions and their spatio-temporal patterns.

MSC:
68T05Learning and adaptive systems
92B20General theory of neural networks (mathematical biology)