zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Peristaltic transport of a third-order fluid in a circular cylindrical tube. (English) Zbl 1041.76002
From the summary: The effect of a third-order fluid on the peristaltic transport is analysed in a circular cylindrical tube, such as some organs in the living body. The third-order flow of an incompressible fluid in a circular cylindrical tube, on which an axisymmetric travelling sinusoidal wave is imposed, is considered. The wavelength of the peristaltic waves is assumed to be large compared to the tube average radius, whereas the amplitude of the wave need not be small compared to the average radius. Both analytic (perturbation) and numerical solutions are given. For the perturbation solution, a systematic approach based on an asymptotic expansion of the solution in terms of a small Deborah number is used, and solutions up to the first order are presented in closed forms.
76A05Non-Newtonian fluids
74F10Fluid-solid interactions
76Z05Physiological flows
92C35Physiological flows