zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Incorporating topological derivatives into level set methods. (English) Zbl 1044.65053

From the abstract: The aim of this paper is to investigate the use of topological derivatives in combination with the level set method for shape reconstruction and optimization problems. We propose a new approach generalizing the standard speed method, which is obtained by using a source term in the level set equation that depends on the topological derivative of the objective functional. The resulting approach can be interpreted as a generalized fixed-point iteration for the optimality system (with respect to topological and shape variations).

Moreover, we apply the new approach for a simple model problem in shape reconstruction, where the topological derivative can be computed without additional effort. Finally, we present numerical tests related to this model problem, which demonstrate that the new method based on shape and topological derivative successfully reconstructs obstacles in situations where the standard level set approach fails.

65K10Optimization techniques (numerical methods)
49Q12Sensitivity analysis
65D99Numerical approximation