zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Boundedness and stability for Cohen–Grossberg neural network with time-varying delays. (English) Zbl 1044.92001
Summary: A model is considered to describe the dynamics of Cohen-Grossberg neural networks [M. A. Cohen and S. Grossberg, IEEE Trans. Syst. Man. Cybern. 13, 815–826 (1983; Zbl 0553.92009)] with variable coefficients and time-varying delays. Uniformly ultimate boundedness and uniform boundedness are studied for the model by utilizing the Hardy inequality. Combining with the Halanay inequality and the Lyapunov functional method, some new sufficient conditions are derived for the model to be globally exponentially stable. The activation functions are not assumed to be differentiable or strictly increasing. Moreover, no assumption on the symmetry of the connection matrices is necessary. These criteria are important in signal processing and design of networks.

MSC:
92B20General theory of neural networks (mathematical biology)
37N25Dynamical systems in biology
34D23Global stability of ODE
68T05Learning and adaptive systems