zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Could Fisher, Jeffreys and Neyman have agreed on testing? (With comments and a rejoinder). (English) Zbl 1048.62006

Summary: Ronald Fisher advocated testing using p-values, Harold Jeffreys proposed use of objective posterior probabilities of hypotheses, and Jerzy Neyman recommended testing with fixed error probabilities. Each was quite critical of the other approaches. Most troubling for statistics and science is that the three approaches can lead to quite different practical conclusions.

This article focuses on discussion of the conditional frequentist approach to testing, which is argued to provide the basis for a methodological unification of the approaches of Fisher, Jeffreys and Neyman. The idea is to follow Fisher in using p-values to define the “strength of evidence” in data and to follow his approach of conditioning on strength of evidence; then follow Neyman by computing Type I and Type II error probabilities, but do so conditional on the strength of evidence in the data. The resulting conditional frequentist error probabilities equal the objective posterior probabilities of the hypotheses advocated by Jeffreys.

MSC:
62A01Foundations and philosophical topics in statistics
62-03Historical (statistics)
62F03Parametric hypothesis testing
01A60Mathematics in the 20th century